viernes, 17 de junio de 2011

Tornados

Un tornado cerca de Anadarko, Oklahoma, Estados Unidos. El tornado en sí es el estrecho embudo que va de la nube al suelo. La parte inferior de este tornado está rodeada por una nube de polvo traslúcida, que fue levantada por los fuertes vientos del tornado en la superficie.
Un tornado es un fenómeno meteorológico que consiste en una columna de aire que rota de forma violenta; su extremo inferior está en contacto con la superficie de la Tierra y el superior con una nube cumulonimbus o, excepcionalmente, con la base de una nube cúmulus.Se trata del fenómeno atmosférico más intenso que se conoce.
Los tornados se presentan de diferentes tamaños y formas pero generalmente tienen la forma de una nube embudo, cuyo extremo más angosto toca el suelo y suele estar rodeado por una nube de desechos y polvo. La mayoría de los tornados cuentan con vientos que llegan a velocidades de entre 65 y 180 km/h, miden aproximadamente 75 metros de ancho y se trasladan varios kilómetros antes de desaparecer. Los más extremos pueden tener vientos con velocidades que pueden girar a 450 km/h o más, medir hasta 2 km de ancho y permanecer tocando el suelo a lo largo de más de 100 km de recorrido.
Entre los diferentes tipos de tornados están las trombas terrestres, los tornados de vórtices múltiples y las trombas marinas. Éstas últimas se forman sobre cuerpos de agua, conectándose a cúmulus y nubes de tormenta de mayor tamaño, pero se les considera tornados porque presentan características similares a los que se forman en tierra, como su corriente de aire en rotación en forma de embudo. Las trombas marinas por lo general son clasificadas como tornados no-supercelulares que se forman sobre cuerpos de agua.Estas columnas de aire frecuentemente se generan en áreas intertropicales cercanas a los trópicos o en las áreas continentales de las latitudes subtropicales de las zonas templadas, y son menos comunes en latitudes mayores, cercanas a los polos o en las latitudes bajas, próximas al ecuador terrestre.Otros fenómenos similares a los tornados que existen en la naturaleza incluyen al gustnado y los remolinos de polvo, de fuego y de vapor.Los tornados pueden arrasar con todo a su paso: vehículos, casas... Además, pueden estar acompañados de tormentas tropicales, eléctricas o huracanes.
Los tornados son detectados a través de radares de impulsos Doppler, así como visualmente por los cazadores de tormentas. Se les ha observado en todos los continentes excepto en la Antártida. No obstante, la gran mayoría de los tornados del mundo se producen en la región estadounidense conocida como Tornado Alley, aunque pueden formarse prácticamente en cualquier parte de América del Norte. También ocurren ocasionalmente en el centro-sur y este de Asia, norte y centro-este de Sudamérica, sur de África, noroeste y sudeste de Europa, oeste y sudeste de Australia y en Nueva Zelanda.
Existen varias escalas diferentes para clasificar la fuerza de los tornados. La escala Fujita-Pearson los evalúa según el daño causado, y ha sido reemplazada en algunos países por la escala Fujita mejorada, una versión actualizada de la anterior. Un tornado F0 ó EF0, la categoría más débil, causa daño a árboles pero no a estructuras. Un tornado F5 ó EF5, la categoría más fuerte, arranca edificios de sus cimientos y puede producir deformaciones estructurales significativas en rascacielos.La escala TORRO va del T0 para tornados extremadamente débiles al T11 para los tornados más fuertes que se conocen. También pueden analizarse datos obtenidos de radares Doppler y patrones de circulación dejados en el suelo (marcas cicloidales) y usarse fotogrametría para determinar su intensidad y asignar un rango.

Definiciones

Un tornado cerca de Seymour, Texas.
Un tornado se define en el Glossary of Meteorology como «una columna de aire que gira violentamente, estando en contacto con el suelo, ya sea colgando de o debajo de una nube cumuliforme, y frecuentemente (pero no siempre) visible como una nube embudo...».En la práctica, para que un vórtice sea clasificado como un tornado, debe tener contacto tanto con el suelo como con la base de la nube. Sin embargo, los científicos aún no han formulado una definición completa del término; por ejemplo, hay desacuerdos respecto a si múltiples puntos de contacto con el suelo provenientes del mismo embudo constituyen diferentes tornados.El término «tornado» se refiere además al vórtice de viento, no a la nube de condensación.

Nube embudo
Artículo principal: Nube embudo
Este tornado no tiene nube embudo, sin embargo, la nube de polvo en rotación indica que hay fuertes vientos en la superficie, y por lo tanto es un tornado real.
Un tornado no necesariamente es visible; sin embargo, la baja presión atmosférica que hay en su interior y que provoca la alta velocidad del viento —de acuerdo con el principio de Bernoulli—, así como su rápida rotación (debido al equilibrio ciclostrófico) generalmente causan que el vapor de agua en el aire se vuelva visible al condensarse en forma de gotas de agua, tomando la forma de una nube embudo o un embudo de condensación. Cuando una nube embudo se extiende por lo menos a la mitad de la distancia entre el suelo y la base de la nube —que suele ser de menos de dos kilómetros—, se le considera un tornado.
Hay ciertos desacuerdos sobre la definición de «nube embudo» y «embudo de condensación». De acuerdo con el Glossary of Meteorology, una nube embudo es cualquier nube en rotación que cuelga de una cúmulus o una cumulonimbus, y por lo tanto la mayor parte de los tornados quedan incluidos bajo esta definición.Entre muchos meteorólogos, una nube embudo se define estrictamente como una nube en rotación no asociada con fuertes vientos en la superficie, y un «embudo de condensación» es un término utilizado para cualquier nube que esté girando debajo de una nube cumuliforme.
Los tornados con frecuencia comienzan siendo nubes embudo sin fuertes vientos en la superficie, no obstante, no todas ellas se terminan convirtiendo en un tornado. De cualquier forma, muchos tornados son precedidos por una nube embudo. La mayor parte de ellos producen fuertes vientos en la superficie, mientras el embudo visible sigue estando apartado del suelo, por lo que es difícil distinguir la diferencia entre una nube embudo y un tornado a la distancia.

Características
 Forma y dimensiones

Un tornado en cuña de alrededor de 1,5 km de ancho en Binger, Oklahoma.
La mayoría de los tornados adoptan la forma de un estrecho embudo, de unos pocos cientos de metros de ancho, con una pequeña nube de desechos cerca del suelo. Los tornados pueden quedar obscurecidos completamente por lluvia o polvo, y si es así, son particularmente peligrosos, puesto que incluso los meteorólogos experimentados podrían no verlos.
Los tornados, no obstante, se pueden manifestar de muchas formas y tamaños. Las pequeñas y relativamente débiles trombas terrestres, por ejemplo, no pueden verse más que como un pequeño torbellino de polvo sobre el suelo. Aunque el embudo de condensación puede no extenderse desde el suelo, si los vientos asociados en la superficie superan los 64 km/h, la circulación es considerada un tornado.Un tornado con una forma casi cilíndrica y altura relativamente baja en ocasiones es llamado en inglés stovepipe tornado (literalmente, «tornado conducto de estufa»). Tornados grandes con un solo vórtice pueden verse como enormes cuñas enterradas en la tierra, y por lo tanto se les conoce como «tornados en cuña». Uno de estos tornados puede ser tan ancho que parezca ser un grupo de nubes oscuras, siendo incluso más ancho que la distancia entre la base de la nube y el suelo. Aún observadores de tormentas experimentados pueden tener dificultades para diferenciar un tornado en cuña y una nube baja a la distancia. Muchos de los tornados más grandes, aunque no todos, son en cuña.

Un tornado en cuerda en su fase de disipación en Tecumseh, Oklahoma.
Los tornados en su etapa de disipación pueden parecer tubos estrechos o cuerdas, y con frecuencia se rizan o tuercen en formas complejas. Se dice que estos tornados están en su «fase de cuerda», o convirtiéndose en un «tornado en cuerda». Cuando toman esta forma, la longitud de su embudo se incrementa, lo que fuerza a los vientos dentro del mismo a debilitarse debido a la conservación del momento angular. Los tornados con múltiples vórtices, por su parte, pueden parecer una familia de remolinos girando alrededor de un centro común, o pueden quedar completamente oscurecidos por la condensación, el polvo y los desechos, aparentando ser un solo embudo.
En los Estados Unidos, en promedio los tornados miden cerca de 150 m de ancho y recorren unos 8 km en contacto con el suelo. De cualquier forma, hay un amplio rango de tamaños de tornados. Los tornados débiles, o los tornados fuertes en fase de disipación, pueden ser sumamente estrechos, a veces apenas con unos cuantos metros de ancho. Una vez se reportó un tornado que tenía una zona de destrucción de solamente 2 m de longitud. Por otro lado, los tornados en cuña pueden tener una zona de destrucción de 1,5 km de ancho, o incluso más. Un tornado que afectó Hallam, Nebraska, el 22 de mayo de 2004, llegó en un punto a medir 4 km de ancho al nivel del suelo.
En términos de longitud de su recorrido, el Tornado Triestatal (Tri-State Tornado), que afectó partes de Misuri, Illinois e Indiana el 18 de marzo de 1925, oficialmente se mantuvo en contacto con el suelo continuamente por 352 km.Muchos tornados que aparentan tener recorridos de 160 km o más en realidad son una familia de tornados formados rápidamente de forma sucesiva; no obstante, no hay pruebas concretas de que esto ocurriera en el caso del Tornado Triestatal.

 Apariencia
Los tornados pueden ser de una gran variedad de colores, dependiendo del ambiente en el que se formen. Aquellos que se desarrollan en un entorno seco pueden ser prácticamente invisibles, apenas distinguibles sólo gracias a los desechos en circulación en la base del embudo. Los embudos de condensación que levantan pocos desechos o no los levantan pueden ser grises o blancos. Al viajar por encima de un cuerpo de agua, como lo hacen las trombas marinas, pueden volverse muy blancos o hasta azules. Los embudos que se mueven lentamente, consumiendo grandes cantidades de desechos y tierra, generalmente son más oscuros, tomando el color de los desechos. Por su parte, los tornados en las Grandes Llanuras pueden volverse rojos debido al tinte rojizo de la tierra, y los tornados en zonas montañosas pueden viajar sobre terrenos cubiertos de nieve, volviéndose de un blanco brillante.

Fotografía del tornado de Waurika, Oklahoma del 30 de mayo de 1976, tomadas casi al mismo tiempo por dos fotógrafos. En la foto superior, el tornado está iluminado de frente, con el sol detrás de la cámara, por lo que el embudo se ve casi blanco. En la imagen inferior, donde la cámara está viendo hacia la dirección opuesta, el tornado queda iluminado por su parte trasera, con el sol detrás de las nubes, dándole un aspecto oscuro.
Un factor importante que determina la apariencia de un tornado son las condiciones de iluminación. Un tornado que esté siendo iluminado por su parte posterior (visto con el sol detrás de él) se ve muy oscuro. El mismo tornado, visto con el sol a espaldas del observador, puede verse gris o blanco brillante. Los tornados que se forman durante el ocaso pueden ser de muchos colores diferentes, presentando tonos de amarillo, anaranjado y rosa.
Algunos factores que pueden reducir la visibilidad de los tornados son el polvo levantado por los vientos de la tormenta, fuerte lluvia o granizo y la oscuridad de la noche. Los tornados que ocurren bajo estas condiciones son particularmente peligrosos, ya que solamente observaciones de un radar meteorológico, o posiblemente el ruido que producen al aproximarse, sirven como advertencia para aquellos que se encuentran en su camino. De cualquier forma, la mayoría de los tornados fuertes se forman bajo la base de la corriente ascendente de la tormenta, la cual está libre de lluvia, permitiendo que sean visibles.Además, la mayoría de los tornados ocurren durante la tarde, cuando el sol puede penetrar incluso las nubes más densas.De igual forma, los tornados nocturnos generalmente son iluminados debido a la frecuente aparición de rayos.
Hay evidencias, incluyendo imágenes de radares móviles Doppler on Wheels e informes de testigos, de que la mayoría de los tornados tienen un centro despejado y calmado donde la presión es extremadamente baja, de forma semejante al ojo de los ciclones tropicales. Esta área estaría despejada (posiblemente llena de polvo), con vientos relativamente calmados, y sería muy oscura, ya que la luz sería bloqueada por los escombros girando en el exterior del tornado. Aquellos que aseguran haber visto el interior de un tornado dicen haberlo logrado gracias a la iluminación de un rayo.
Rotación
Los tornados están formados por dos tipos de movimientos verticales del aire: uno anticiclónico con giro horario, formado por el aire frío y seco que desciende disminuyendo su radio y por lo tanto, aumentando su velocidad de giro, y otro ascendente, que constituye un área ciclónica, cuyo radio de acción va aumentando en espiral al ir ascendiendo en sentido contrario a las agujas del reloj en el hemisferio norte, y en el sentido de las agujas del reloj en el hemisferio sur. Las superceldas y los tornados giran ciclónicamente en simulaciones numéricas incluso cuando el efecto Coriolis es ignorado.Los tornados y mesociclones de bajo nivel deben su rotación a procesos complejos dentro de la supercelda y el medio ambiente.
Los tornados y el efecto Coriolis
No obstante lo que se ha indicado, tanto la rotación ascendente hacia la izquierda en el hemisferio norte como la descendente hacia la derecha también en el hemisferio norte, así como la formación de los tornados tipo cuerda y su desplazamiento en su trayectoria superficial se deben al efecto de Coriolis. Ello se debe a la gran dimensión vertical de los tornados, en comparación con su anchura en la superficie: la velocidad de rotación terrestre a los 30° de latitud es de 404 m/s como señala Antonio Gil Olcina . Como resulta lógico, esta velocidad genera un efecto intenso en la superficie, donde la fricción hace girar la columna de aire hacia la derecha (de nuevo en el hemisferio norte) mientras que en altura, dicha velocidad es mucho menor. Todos los tornados comienzan girando en dirección anticiclónica y están formados por una corriente vertical de aire frío y seco que desciende en forma de una espiral que va disminuyendo su radio de giro al ir bajando, con lo que aumenta considerablemente su velocidad de rotación y da origen en compensación, a una espiral ascendente de aire caliente y seco pero que forma rápidamente una nube embudo al enfriarse rápidamente ese aire girando de manera ciclónica, es decir, antihoraria en el hemisferio norte. La existencia de dos torbellinos simultáneos girando en sentido opuesto en el mismo punto es lo que explica la asimetría de un tornado: siempre tiene una parte abierta, sin nube de condensación a baja altura (por donde desciende el aire frío y seco) y otra por donde asciende el aire caliente y húmedo que, eventualmente, puede alcanzar la nube formando una nube embudo por el aumento del diámetro de giro. Generalmente, sólo sistemas tan débiles como las trombas terrestres y los gustnados pueden rotar anticiclónicamente, y usualmente sólo lo hacen aquellos que se forman en el lado anticiclónico de la corriente descendente del flanco trasero en una supercelda ciclónica.No obstante, en raros casos, los tornados anticiclónicos se forman en asociación con el mesoanticiclón de una supercélula anticiclónica —de la misma forma que un típico tornado ciclónico— o como un tornado acompañante, ya sea como un tornado satélite o asociado con circulaciones anticiclónicas dentro de una supercelda.
Sonido y sismología
Los sonidos producidos por un tornado son provocados por múltiples mecanismos. A lo largo del tiempo se han reportado varios sonidos producidos por tornados, frecuentemente comparados con sonidos familiares para los testigos y generalmente como alguna variación de un estruendo. Sonidos que son reportados con frecuencia incluyen un tren de carga, rápidos o cascadas, un motor a reacción o combinaciones de éstos. Muchos tornados no son audibles a gran distancia; la naturaleza y distancia de propagación del sonido depende de las condiciones atmosféricas y la topografía.
Los vientos del vórtice del tornado y de los turbulentos remolinos constituyentes, así como la interacción de las corrientes de aire con la superficie y los desechos, contribuyen a la creación de sonidos. Las nubes embudo también producen sonidos. Se ha reportado que las nubes embudo y pequeños tornados hacen sonidos como de chiflidos, aullidos, murmullos o zumbidos de innumerables abejas, o electricidad, mientras que también se reporta que muchos tornados producen un ruido sordo grave y continuo, o un sonido irregular.
Ya que muchos tornados son audibles únicamente cuando están muy cerca, el ruido no es una advertencia fiable de un tornado. Además, cualquier viento fuerte, incluso una granizada severa o el continuo tronar de rayos en una tormenta eléctrica, pueden producir un estruendo similar al de los tornados.
Los tornados también producen marcas infrasónicas inaudibles.A diferencia de las audibles, las marcas inaudibles de los tornados han sido aisladas; debido a la propagación a larga distancia de las ondas sonoras de baja frecuencia, se está intentando desarrollar aparatos para la predicción y detección de tornados que además sirvan para comprender su morfología, dinámica y formación. Los tornados además producen una marca sísmica detectable, y continúan las investigaciones para aislarla y entender su proceso.
Electromagnetismo, rayos y otros efectos
Los tornados emiten en el espectro electromagnético, y se han detectado emisiones de señales radio atmosféricas y de campo eléctrico.También se han observado correlaciones entre tornados y patrones de la actividad de los rayos. Las tormentas tornádicas no contienen más rayos que otras tormentas y algunas celdas tornádicas nunca los producen. Generalmente, la actividad de rayos que van de la nube al suelo (cloud-to-ground, o CG) decrece cuando un tornado alcanza la superficie y regresa a su nivel normal cuando el tornado se disipa. En muchos casos, tornados y tormentas eléctricas de gran intensidad exhiben un incremento y dominancia anómala de polaridad positiva en las descargas de tipo CG.El electromagnetismo y los rayos tienen poco o nada que ver directamente con aquello que provoca la aparición de tornados (ya que éstos son básicamente un fenómeno termodinámico), aunque posiblemente hay conexiones con la tormenta y el ambiente afectando a ambos fenómenos.
En el pasado se ha reportado presencia de luminosidad, y es probable que se deba a confusión en las identificaciones con fuentes luminosas externas como rayos, luces urbanas y destellos de instalaciones eléctricas dañadas, ya que las fuentes internas rara vez son reportadas y no se sabe que hayan sido documentadas. Además de los vientos, los tornados también presentan cambios en variables atmosféricas como temperatura, humedad y presión. Por ejemplo, el 24 de junio de 2003, cerca de Manchester (Dakota del Sur), una investigación registró un déficit de presión de 100 mbar. La presión disminuyó gradualmente a medida que el vórtice se acercaba y luego bajó extremadamente rápido a 850 mbar en el centro del violento tornado antes de aumentar rápidamente al alejarse el vórtice, resultando en una gráfica de la presión en forma de «V». Al mismo tiempo, la temperatura tiende a decrecer y el contenido de humedad a aumentar en la vecindad de un tornado.

Ciclo de vida

Esta secuencia de imágenes muestra el nacimiento de un tornado. Primero, se forma el torbellino con aire seco y frío que desciende del borde de la nube en una espiral con sentido horario. Los efectos de este torbellino pueden verse en la nube de polvo en el suelo en la imagen superior. A su vez, dicho torbellino genera inmediatamente una espiral ascendente en sentido antihorario, espiral que da origen al enfriamiento del aire y a la posterior condensación formando el embudo nuboso. Este tornado, formado cerca de Dimmitt, Texas, fue uno de los tornados violentos mejor observados en la historia.
Relación con la supercelda
Los tornados generalmente se desarrollan a partir de un tipo de tormentas conocidas como superceldas.Las superceldas contienen mesociclones, que son un área de rotación organizada de aire que se localiza en la atmósfera, de entre 2 a 10 km de ancho. Además de tornados, son comunes en tales tormentas lluvias intensas, rayos, fuertes ráfagas de viento y granizo. Si bien la mayoría de los tornados, particularmente los más fuertes (del EF3 al EF5 según la Escala Fujita-Pearson), se derivan de superceldas, también algunos se pueden formar a partir de otras circulaciones de aire, y por lo tanto son denominados tornados no supercelulares. Este tipo de tornados, no obstante, suelen ser de menor intensidad.

Formación
La mayor parte de los tornados originados en superceldas siguen un ciclo de vida reconocible. Éste comienza con el origen de la propia supercelda, que se da cuando una corriente de aire frío y seco se encuentra con otra de aire cálido y húmedo y se desplaza por encima de ella. Al ser más pesado el aire frío, se producen capas de aire inestable donde el aire frío desciende y obliga al aire caliente a ascender, creando la tormenta. Si existe una capa de aire cálido y seco que actúe como aislante, y si las diferencias de temperatura son lo suficientemente grandes, el descenso del aire frío se puede dar en forma de remolino. Este aire que desciende, llamado corriente descendente del flanco trasero (RFD, por sus siglas en inglés), acelera al irse acercando al suelo, y arrastra consigo al mesociclón de la supercelda hacia él.Las corrientes ascendentes, por su parte, atraen el aire a su alrededor, aumentando la rotación y convirtiéndose en una columna estrecha, conocida como nube embudo.
Al acercarse el mesociclón al suelo, un embudo de condensación visible aparenta descender de la base de la tormenta, con frecuencia a partir de una nube pared en rotación. Al ir descendiendo el embudo, la RFD también llega al suelo, creando un frente de ráfagas que puede causar daños a una buena distancia del tornado. Usualmente, la nube embudo se convierte en un tornado pocos minutos después de que la RFD toque el suelo.
Madurez
Inicialmente, el tornado cuenta con una buena fuente de aire caliente y húmedo que ingresa en él para darle energía, por lo que crece hasta que alcanza su etapa madura. Esto puede durar unos pocos minutos o más de una hora, y es durante este tiempo que el tornado generalmente causa el mayor daño y sus dimensiones llegan al máximo, pudiendo llegar a medir en algunos casos más de 1,5 km de ancho. Mientras tanto, la RFD, que en esta etapa es un área de vientos superficiales fríos, comienza a colocarse alrededor del tornado, interrumpiendo el flujo de aire caliente que lo alimenta.

Disipación
Vista lateral de una supercelda.
Cuando la RFD envuelve completamente al tornado y le corta el suministro de aire, el vórtice comienza a debilitarse, y se vuelve delgado, semejante a una cuerda. Esta es la fase de disipación, misma que normalmente no dura más de unos pocos minutos, y tras la cual el tornado se esfuma. Durante esta etapa la forma del tornado depende en gran medida de los vientos de la tormenta principal, lo que puede hacer que tome formas inusuales.A pesar de que el tornado está desapareciendo, todavía es capaz de causar daño. Al convertirse en un tubo delgado, de la misma forma que un patinador recoge los brazos para girar más rápido, los vientos pueden incrementar su velocidad en este punto.
Habiendo entrado el tornado en su etapa de disipación, su mesociclón asociado por lo general también se debilita, debido igualmente a que la RFD corta el flujo de aire que lo alimenta. Al disiparse el primer mesociclón y su tornado asociado, el flujo de la tormenta puede concentrarse en una nueva área más cerca de su centro. Si un nuevo mesociclón se forma, el ciclo puede repetirse, produciendo uno o más tornados nuevos. Ocasionalmente, el viejo mesociclón y el nuevo producen tornados al mismo tiempo.
Aunque esta teoría acerca de cómo surgen, se desarrollan y desaparecen los tornados es ampliamente aceptada, no explica la formación de tornados más pequeños, como las trombas terrestres o los tornados con múltiples vórtices. Todos ellos tienen diferentes mecanismos que influencian su desarrollo, no obstante, la mayoría siguen un patrón similar al aquí descrito.


Tipos
Tornados verdaderos
Tornado de vórtices múltiples
Artículo principal: Tornado de vórtices múltiples
Un tornado de vórtices múltiples en las afueras de Dallas, Texas, el 2 de abril de 1957.
Un tornado de vórtices múltiples o tornado multivórtice es un tipo de tornado en el cual dos o más columnas de aire en movimiento giran alrededor de un centro común. Las estructuras multivórtices pueden presentarse en casi cualquier circulación de aire, pero se las observa frecuentemente en tornados intensos. Estos vórtices generalmente crean pequeñas áreas que causan mayor daño a lo largo de la trayectoria del tornado principal.Este fenómeno es distinto al tornado satélite, el cual es un tornado más débil que se forma muy cerca de otro tornado más grande y fuerte, contenido dentro del mismo mesociclón. El tornado satélite aparenta «orbitar» alrededor del tornado mayor (de ahí el nombre), asemejándose a un tornado multivórtice. No obstante, el tornado satélite es una circulación distinta, y es mucho más pequeño que el embudo principal.

Tromba marina
Artículo principal: Tromba marina
izquierda la ley Una tromba marina cerca de los cayos de la Florida.
La tromba marina o manga de agua es simplemente un tornado que se encuentra sobre el agua. No obstante, los investigadores generalmente distinguen las trombas marinas tornádicas de las no tornádicas. Las trombas marinas no tornádicas son menos fuertes pero mucho más comunes, y son similares en su dinámica a los llamados remolinos de polvo y a las trombas terrestres. Se forman en las bases de nubes cumulus congestus en aguas tropicales y subtropicales. Tienen vientos relativamente débiles, paredes lisas con flujo laminar y generalmente viajan muy lentamente, si es que lo hacen. Comúnmente ocurren en los cayos de la Florida y al norte del mar Adriático. En contraste, las trombas marinas tornádicas son literalmente "tornados sobre el agua". Se forman sobre ella de manera similar a los tornados mesociclónicos, o bien son tornados terrestres que llegan al agua. Ya que se forman a partir de tormentas fuertes y pueden ser mucho más intensas, rápidas y de mayor duración que las trombas no tornádicas, se les considera más peligrosas.

Tromba terrestre
Artículo principal: Tromba terrestre
Una tromba terrestre cerca de North Platte, Nebraska el 22 de mayo de 2004.
Una tromba terrestre, también llamada tornado no supercelular, tornado o embudo nuboso o, por su nombre en inglés, landspout, es un tornado que no está asociado con un mesociclón. Su nombre proviene de su denominación como una «tromba marina no tornádica sobre tierra». Las trombas marinas y las terrestres comparten varias características distintivas, incluyendo su relativa debilidad, corta duración y un embudo de condensación liso y de pequeñas dimensiones que con frecuencia no toca el suelo. Estos tornados también crean una distintiva nube laminar de polvo cuando hacen contacto con el suelo, debido a que su mecánica es diferente a la de los tornados mesoformes. Aunque generalmente son más débiles que los tornados clásicos, pueden producir fuertes vientos que igualmente son capaces de causar graves daños.

Remolino de polvo
Artículo principal: Remolino de polvo
Un remolino de polvo.
Un remolino de polvo o remolino de arena, conocido en inglés como dust devil (literalmente «demonio de polvo») se parece a un tornado en que es una columna de aire vertical en rotación. No obstante, se forman bajo cielos despejados y rara vez alcanzan la fuerza de los tornados más débiles. Se desarrollan cuando una fuerte corriente ascendente convectiva se forma cerca del suelo durante un día caluroso. Si hay suficiente cizalladura del viento en los niveles inferiores, la columna de aire caliente que está en ascenso puede desarrollar un pequeño movimiento ciclónico que puede distinguirse cerca del suelo. A estos fenómenos no se les considera tornados porque se forman cuando hay buen clima y no se asocian con nube alguna. Pueden, no obstante, causar ocasionalmente daños de consideración, especialmente en zonas áridas.

Remolino de fuego
Artículo principal: Remolino de fuego
Aquellas circulaciones que se desarrollan cerca de incendios forestales reciben el nombre de remolinos o torbellinos de fuego. No se les considera tornados salvo en el raro caso de que se conecten a una nube pyrocumulus o a otra nube cumuliforme sobre ellos. Los remolinos de fuego por lo general no son tan fuertes como los tornados relacionados con tormentas. Sin embargo, pueden causar daños considerables
.
Remolino de vapor
Artículo principal: Remolino de vapor
Un remolino de vapor, en inglés llamado steam devil («diablo de vapor») es un término que se utiliza para describir a una corriente ascendente en rotación que implica vapor o humo. Un remolino de vapor es muy raro, pero se forma principalmente a partir de humo emitido por las chimeneas de una central de energía. Las aguas termales y los desiertos también pueden ser zonas aptas para la formación de un remolino de vapor. Este fenómeno puede ocurrir sobre el agua, cuando el frío aire ártico se encuentra con agua relativamente cálida.

Intensidad y daño

Un ejemplo del daño causado por un tornado de tipo EF1. Aquí, el techo ha sufrido daños sustanciales, y la puerta del garaje ha sido arrancada hacia afuera, pero las paredes y las estructuras de soporte siguen intactas.
La escala Fujita-Pearson y la llamada escala Fujita-Pearson mejorada clasifican a los tornados según el daño causado. La escala mejorada (EF por sus siglas en inglés) fue un perfeccionamiento de la vieja escala Fujita, usando estimaciones de vientos y mejor descripción de los daños; sin embargo, fue diseñada para que un tornado clasificado según la escala Fujita recibiera el mismo rango numérico, y fue implementada comenzando en los Estados Unidos en 2007. Un tornado EF0, el más débil según la escala, posiblemente dañe árboles pero no estructuras, mientras que un tornado EF5, el más fuerte, puede arrancar edificios de sus cimientos dejándolos descubiertos e incluso deformar rascacielos. La similar escala TORRO va de T0 para tornados extremadamente débiles a T11 para los tornados más poderosos que se conocen. Datos obtenidos de un radar de impulsos Doppler, la fotogrametría y los patrones en el suelo (marcas cicloidales) igualmente pueden ser analizados para determinar la intensidad y otorgar un rango.

Una escuela fuertemente dañada después de que un tornado de categoría EF5 (la más alta de su escala) pasara por la ciudad de Greensburg, Kansas, durante la oleada de tornados de mayo de 2007.
Los tornados varían en intensidad sin importar su forma, tamaño y localización, aunque los tornados fuertes generalmente son más grandes que los débiles. La relación con la longitud de su recorrido y duración también varía, aunque los tornados con mayor recorrido tienden a ser más fuertes.En el caso de tornados violentos, sólo presentan gran intensidad en una porción del recorrido, buena parte de esta intensidad proviniendo de subvórtices.
En los Estados Unidos, el 80% de los tornados son clasificados como EF0 y EF1 (de T0 a T3). Cuanto mayor sea la intensidad de un rango, menor es su tasa de incidencia, pues menos de 1% son tornados violentos (EF4, T8 o más fuerte).Fuera del Tornado Alley, y de Norteamérica en general, los tornados violentos son extremadamente raros. Aparentemente esto se debe más que nada al menor número de tornados en general que hay fuera de dicha región, ya que las investigaciones muestran que la distribución de los tornados según su intensidad es bastante similar a nivel mundial. Unos cuantos tornados de importancia ocurren cada año en Europa, áreas del centro-sur de Asia, porciones del sureste de Sudamérica y el sur de África.

Climatología

Zonas alrededor del mundo donde es más probable la aparición de tornados.
En los Estados Unidos se presentan más tornados que en cualquier otro país: unas cuatro veces más que los que se estima que se forman en toda Europa, sin incluir trombas marinas.Esto se debe principalmente a la geografía única del continente americano. América del Norte es relativamente grande y se extiende desde la zona intertropical hasta las áreas árticas, y no cuenta con una cadena montañosa importante que vaya de este a oeste y que bloquee el flujo de aire entre estas dos zonas. En las latitudes centrales, donde ocurren la mayor parte de los tornados, las montañas Rocosas bloquean la humedad y el flujo atmosférico, permitiendo que exista aire más seco en los niveles intermedios de la tropósfera, y causando la formación de un área con presión baja al este de dichas montañas. Un incremento en el flujo de aire desde las Rocosas propicia la formación de una línea seca cuando el flujo es fuerte en los niveles superiores, mientras el golfo de México, al este, proporciona abundante humedad en los niveles bajos de la atmósfera. Esta topografía única provoca muchas colisiones de aire cálido con aire frío, que son las condiciones que crean tormentas fuertes y duraderas. Una gran parte de estos tornados se forman en dicha área del centro de los Estados Unidos entre las Rocosas y el golfo, conocida como Tornado Alley («callejón de los tornados»).Esta área abarca también partes de Canadá, principalmente en Ontario y las praderas canadienses, aunque el sudeste de Quebec, el interior de Columbia Británica y el occidente de Nuevo Brunswick también son propensos a tornados. En ocasiones también se presentan tornados fuertes en el noreste de México.
En promedio, en los Estados Unidos ocurren unos 1.200 tornados por año. Los Países Bajos presentan el mayor número de tornados por área de cualquier país al registrarse allí más de 20 tornados, lo que equivale a 0,00048 tornados por km2 anualmente, seguidos por el Reino Unido que presenta anualmente unos 33, es decir, 0,00013 por km2; de cualquier forma, la mayoría son pequeños y causan muy poco daño. En números absolutos, sin importar la extensión territorial, el Reino Unido experimenta más tornados que cualquier país europeo, excluyendo trombas marinas.

Actividad de los tornados en los Estados Unidos. Las zonas más oscuras denotan el área comúnmente conocida como Tornado Alley.
Los tornados matan un promedio de 179 personas por año en Bangladesh, por mucho la mayor cantidad dentro de un país en el mundo. Esto se debe a su elevada densidad de población, deficiente calidad de las construcciones, carencia de conocimientos acerca de medidas de seguridad para combatir a los tornados y otros factores. Otros países del mundo que cuentan con tornados frecuentemente incluyen a Sudáfrica, Argentina, el sur de Brasil, Australia y Nueva Zelanda, así como porciones de Europa y Asia.
Los tornados son más frecuentes durante la primavera y menos durante el invierno.Ya que la primavera y el otoño son periodos de transición (de clima cálido a frío y viceversa) hay más posibilidades de que el aire frío se encuentre con aire cálido, lo que provoca que durante esas estaciones se experimenten picos de actividad.No obstante, las condiciones adecuadas para su formación se pueden presentar en cualquier época del año. Los tornados también pueden generarse a partir del ojo de los ciclones tropicales que tocan tierra,lo cual suele suceder en el otoño y a fines del verano.
La incidencia de los tornados depende altamente de la hora del día, debido a la radiación solar.A nivel mundial, la mayoría de los tornados ocurren durante la tarde, entre las 3:00 pm y las 7:00 pm del tiempo local, siendo el punto más alto a las 5:00 pm. Sin embargo, los tornados destructivos pueden ocurrir a cualquier hora del día. El tornado de Gainesville de 1936, uno de los tornados más devastadores de la historia, ocurrió a las 8:30 am tiempo local.
Asociación con el clima
Existen zonas como el mar Mediterráneo que aumenta a su vez el volumen de humedad en la atmósfera. El incremento de humedad puede provocar un crecimiento en la aparición de tornados, particularmente durante la temporada fría.
Algunas evidencias sugieren que el fenómeno de Oscilación del Sur de El Niño (ENSO, por sus siglas en inglés) se encuentra ligeramente relacionado con cambios en la actividad de los tornados; esto varía según la temporada y la región así como dependiendo de si el fenómeno ENSO corresponde al de El Niño o La Niña.
Los cambios climáticos pueden afectar a los tornados a través de teleconexiones como sucede cuando cambia una corriente en chorro y otros patrones climáticos de importancia. Aunque es posible que el calentamiento global pueda afectar la actividad de los tornados, tal efecto aún no puede ser identificable debido a su complejidad, a la naturaleza de las tormentas y a cuestiones relacionadas con la calidad de las bases de datos. Además, cualquier efecto variaría según la región.

Predicción

Mapas probabilísticos del Storm Prediction Center durante el auge de la oleada de tornados del 6 al 8 de abril de 2006. El primer mapa indica el riesgo de tiempo severo en general (incluyendo granizo fuerte, vientos peligrosos y tornados), mientras que el segundo mapa específicamente muestra el porcentaje de probabilidad de que un tornado se forme a no más de 40 km de cualquier punto dentro del área encerrada. El área rayada en el mapa inferior indica un riesgo de 10% o más de que un tornado F2 o más fuerte se forme a 40 km de cualquier punto del área señalada.
El pronóstico del tiempo es llevado a cabo regionalmente por muchas agencias nacionales e internacionales. En la mayor parte, ellas también se encargan de la predicción de las condiciones que propician el desarrollo de los tornados.
En Australia, numerosas advertencias de tormentas son proporcionadas por el Bureau of Meteorology («Agencia de Meteorología») de dicha nación. El país se encuentra en proceso de actualizarse para usar sistemas de radares de impulsos Doppler, habiendo alcanzado su primera meta de instalar seis radares nuevos en julio de 2006.
Por otro lado, en el Reino Unido la TORRO (Tornado and Storm Research Organisation, u Organización para la Investigación de Tornados y Tormentas) lleva a cabo predicciones experimentales.La Met Office provee pronósticos oficiales para este país, mientras que en el resto de Europa el proyecto ESTOFEX (European Storm Forecast Experiment, o Experimento Europeo de Predicción de Tormentas) proporciona pronósticos del tiempo acerca de la probabilidad de que haya mal clima,y el ESSL (European Severe Storms Laboratory, o Laboratorio Europeo de Tormentas Severas) conserva una base de datos de los eventos.
Igualmente, en los Estados Unidos las predicciones climáticas generalizadas son realizadas por el Storm Prediction Center (Centro de Predicción de Tormentas), con sede en Norman, Oklahoma. En este centro se realizan predicciones probabilísticas y categóricas para los próximos tres días en relación al clima severo, incluyendo tornados. También hay un pronóstico más general que abarca el periodo del cuarto al octavo día. Justo antes del momento en que se espera que se presente una amenaza climática severa, como un tornado, el SPC envía varias alertas referentes al fenómeno, en colaboración con las oficinas locales del Servicio Meteorológico Nacional de ese país.
A su vez, en Japón la predicción y el estudio de los tornados están a cargo de la Agencia Meteorológica de Japón, mientras que en Canadá las alertas y los pronósticos climáticos, incluyendo los de los tornados, son proporcionados por siete oficinas regionales del Servicio Meteorológico de Canadá, una subdivisión de Environment Canada.
Detección
Rigurosos intentos para poder advertir los tornados comenzaron en los Estados Unidos a mediados del siglo XX. Antes de los años 1950, el único método para detectar un tornado era que alguien lo viera. Generalmente, la noticia de un tornado no llegaría a una estación climática local hasta después de la tormenta. No obstante, con el advenimiento del radar meteorológico, las zonas cercanas a las estaciones climáticas tendrían avisos con tiempo del mal clima. Los primeros avisos públicos de tornados aparecieron en 1950 y las primeras alertas de tornados, en 1952. En 1953 se confirmó que los ecos en cadena se encuentran asociados con los tornados.Al reconocer estos patrones, los meteorólogos, estando a varios kilómetros de distancia, pudieron detectar tormentas que probablemente producirían tornados.

Un secuencia de radar de Doppler on Wheels de un eco en cadena y un mesociclón asociado en el condado de Goshen, Wyoming el 5 de junio de 2009. Los mesociclones fuertes aparecen como áreas adyacentes de amarillo y azul (en otros radares, rojo brillante y verde brillante), y generalmente indican la existencia de un tornado o su inminente aparición.
Localización de tormentas
A mediados de la década de 1970, el Servicio Meteorológico Nacional de Estados Unidos (NWS) incrementó sus esfuerzos para entrenar individuos que avistaran tormentas e identificaran sus características principales, como fuerte granizo, vientos devastadores y tornados, así como el daño que causan. El programa fue llamado Skywarn, y los que participaron en él fueron asistentes de sheriff locales, policías estatales, bomberos, conductores de ambulancias, operadores de radio, trabajadores de protección civil, cazadores de tormentas y ciudadanos comunes. Cuando se espera mal clima, las estaciones climáticas locales solicitan que estos localizadores de tormentas hagan las búsquedas necesarias y reporten cualquier tornado inmediatamente, para que la oficina pueda enviar un aviso oportuno a la población.
Por lo general los localizadores son entrenados por el NWS en representación de sus respectivas organizaciones, y les reportan a ellas. Las organizaciones activan sistemas públicos de alarma como sirenas y el Emergency Alert System, y dirigen su reporte al NWS.Hay más de 230.000 localizadores climáticos entrenados a través del Skywarn en los Estados Unidos.
En Canadá, una red similar de localizadores voluntarios del clima, llamada Canwarn, ayuda a localizar el mal clima, contando con más de 1000 voluntarios.En Europa, varias naciones se encuentran organizando redes de localizadores bajo el auspicio de Skywarn Europe, y la Tornado and Storm Research Organisation (TORRO) ha mantenido una red de localizadores en el Reino Unido desde 1974.
Los localizadores de tormentas son necesarios porque los sistemas de radar como el NEXRAD no pueden detectar un tornado, sólo indicaciones que sugieren su presencia. Los radares pueden dar un aviso antes de que haya evidencia visual de un tornado, pero la información de un observador puede ratificar la amenaza o determinar que la llegada de un tornado no es inminente.La habilidad de un localizador para ver lo que un radar no puede es especialmente importante al aumentar la distancia desde el sitio del radar, porque la señal del radar, al viajar en línea recta, va aumentando progresivamente su altitud respecto al suelo al irse alejando del radar debido a la curvatura de la Tierra, además de que la señal también se dispersa.

Una nube pared en rotación con una evidente corriente descendente del flanco trasero en su extremo izquierdo.
Los localizadores de tormentas son entrenados para discernir si una tormenta vista a cierta distancia es o no una supercelda. Generalmente miran su parte trasera, la principal región de corrientes ascendentes y flujo de entrada. Debajo de la corriente ascendente hay una base sin lluvia, y en el siguiente paso de la tornadogénesis se forma una nube pared en rotación. La gran mayoría de los tornados intensos ocurren con una nube pared detrás de una supercelda.
La evidencia de que se trata de una supercelda proviene de la forma y la estructura de la tormenta, y otras características de las cumulonimbus como pueden ser una vigorosa columna de corrientes ascendentes, una cima emergente sobre la base de la nube que persiste largo tiempo, una base firme y una apariencia de sacacorchos. Bajo la tormenta y más cerca de donde la mayoría de los tornados se encuentran, evidencias de una supercelda y de la posibilidad de un tornado incluyen bandas de entrada (particularmente curvas), la fuerza del flujo de entrada, la temperatura y humedad del aire que entra, cómo es la proporción del aire que entra y del que sale de la tormenta, y qué tan lejos están el núcleo de precipitación del flanco delantero y la nube pared uno del otro. La tornadogénesis es más probable en la interfase de la corriente ascendente y de la corriente descendente del flanco trasero, y requiere un balance entre la flujo de entrada y el de salida.
Las nubes pared que rotan, mismas que generan tornados, generalmente preceden a éstos entre cinco y treinta minutos. Las nubes pared en rotación son la manifestación visual de un mesociclón. A menos que se dé a un nivel bajo, la tornadogénesis es altamente improbable a menos que ocurra una corriente descendente del flanco trasero, que generalmente es evidenciada visiblemente por la evaporación de una nube adyacente a la esquina de una nube pared. Un tornado generalmente ocurre cuando pasa esto o poco tiempo después; primero, una nube embudo baja a la superficie y en casi todos los casos, para cuando va a mitad de camino, un remolino superficial ya se ha desarrollado, lo que significa que un tornado está en el suelo antes de que la condensación conecte la circulación de la superficie con la tormenta. Los tornados también pueden ocurrir sin nubes pared, bajo líneas de flanqueo. Los localizadores observan todas las partes de una tormenta, así como la base de la nube y la superficie.
Récords

Mapa con las rutas de los tornados en la Súper Oleada.
El tornado más extremo del que se tiene registro fue el Tornado Tri-Estatal (Tri-State Tornado), que atravesó partes de Misuri, Illinois e Indiana el 18 de marzo de 1925. Posiblemente hubiera sido clasificado como un tornado F5, aunque los tornados no eran clasificados en esa época. Mantiene los récords por haber recorrido la mayor distancia (352 km), la mayor duración (unas 3,5 horas) y la mayor velocidad de desplazamiento hacia el frente para un tornado de importancia (117 km/h) en todo el mundo. Además, es el tornado más mortífero en la historia de los Estados Unidos (695 muertos).También fue en su momento el segundo tornado más costoso de la historia, pero ya ha sido superado por muchos otros sin normalizar. Cuando los costos son normalizados según la riqueza y la inflación, sigue siendo hoy en día el tercer tornado más costoso. El tornado más mortífero a nivel mundial fue el tornado de Daultipur-Salturia en Bangladesh el 26 de abril de 1989, que mató aproximadamente a 1.300 personas. Bangladesh ha tenido al menos 19 tornados en su historia que han matado a más de 100 personas, lo que representa al menos la mitad del total en el resto del mundo.
La mayoría de los récords establecidos para oleadas de tornados corresponden al llamado Super Outbreak (Súper Oleada), que afectó una gran parte del centro de los Estados Unidos y una pequeña zona del sur de Ontario en Canadá entre el 3 y el 4 de abril de 1974. No sólo presentó esta oleada la increíble cantidad de 148 tornados en únicamente 18 horas, sino que también varios de ellos eran violentos; seis eran de intensidad F5 y veinticuatro eran F4. Esta oleada llegó a tener dieciséis tornados en la superficie al mismo tiempo en su punto más fuerte. Más de 300 personas, posiblemente hasta 330, murieron a causa de los tornados de esta oleada.
Aunque es casi imposible medir directamente la velocidad del viento del tornado más violento (los anemómetros convencionales serían destruidos por los fuertes vientos), algunos tornados han sido escaneados por unidades móviles de radares Doppler, que pueden proporcionar un estimado certero de la velocidad de los vientos de un tornado. La mayor velocidad medida en un tornado, que es igualmente la mayor velocidad de un viento jamás medida en el planeta, es de 484 ± 32 km/h en el tornado F5 de Moore, Oklahoma. Aunque la medición fue tomada a unos 30 m sobre la superficie, demuestra el poder que tienen los tornados más fuertes.
Las tormentas que producen tornados pueden presentar intensas corrientes ascendentes, a veces sobrepasando los 240 km/h. Los desechos que levanta un tornado pueden llegar hasta la tormenta principal y ser arrastrados una gran distancia. Un tornado que afectó a Great Bend, Kansas en noviembre de 1915 fue un caso extremo, donde una «lluvia de desechos» ocurrió a 130 km del pueblo, un saco de harina fue hallado a 177 km y un cheque cancelado del Banco de Great Bend fue encontrado en un campo a las fueras de Palmyra, Nebraska 491 km al noreste.Las trombas marinas y tornados han sido utilizados como una posible explicación para ocasiones en que han llovido peces y otros animales.
Seguridad
A pesar de que los tornados pueden atacar en cualquier instante, existen precauciones y medidas preventivas que la gente puede adoptar para aumentar sus posibilidades de sobrevivir a un tornado. Autoridades como el Storm Prediction Center aconsejan contar con un plan contra tornados. Cuando una alerta de tornado es enviada, refugiarse en un sótano o una habitación localizada en la parte más interna de una casa resistente aumenta en gran medida las posibilidades de sobrevivir. En áreas propensas a tornados, muchos edificios cuentan con refugios especiales para tormentas. Estas habitaciones subterráneas han ayudado a salvar miles de vidas.
Algunos países cuentan con agencias meteorológicas que proporcionan predicciones de tornados e incrementan el nivel de alerta para un posible tornado (de la misma forma que lo hacen los avisos y alertas de tornados en Estados Unidos y Canadá). Las estaciones climatológicas de radio también proporcionan alarmas cuando se libera una advertencia por clima severo para su área local, aunque este tipo de estaciones de radio se encuentran generalmente sólo en los Estados Unidos.
A menos que el tornado esté a gran distancia y sea visible, los meteorólogos aconsejan a los conductores que estacionen sus vehículos fuera del camino (para no bloquear al tráfico de emergencia), y buscar un refugio seguro. Si no hay uno en las cercanías, colocarse en lo profundo de una zanja es la siguiente mejor opción.

Investigación

Una unidad Doppler On Wheels observando un tornado cerca de Attica, Kansas.
La meteorología es una ciencia relativamente joven y aún más el estudio de los tornados. Aunque han sido estudiados desde el siglo XIX y con mayor énfasis desde mediados del siglo XX, todavía hay aspectos de ellos que son un misterio.Los científicos tienen una idea bastante precisa del desarrollo de tormentas y mesociclones,y de las condiciones meteorológicas que conducen a su formación; no obstante, el paso de supercelda (u otros procesos formativos) a tornadogénesis y la diferenciación de mesociclones tornádicos y no tornádicos son aspectos que todavía no se comprenden del todo y son el enfoque de gran parte de las investigaciones.
También están siendo estudiados los mesociclones en los niveles bajos de la atmósfera y el ensanchamiento de la vorticidad en los niveles bajos que se convierte en el tornado,principalmente cuáles son los procesos y cuál es la relación del medio y la tormenta convectiva. Se ha observado a tornados intensos formándose simultáneamente con un mesociclón arriba (en lugar de la sucesiva mesociclogénesis) y a algunos tornados intensos que han ocurrido sin un mesociclón en los niveles medios. En particular, el papel de las corrientes descendentes, principalmente la corriente descendente del flanco trasero, y el papel de los límites baroclínicos, son importantes temas de estudio.
Predecir con fiabilidad la intensidad de un tornado y su longevidad continúa siendo un problema, así como los detalles concernientes a las características de un tornado durante su ciclo de vida y tornadolisis. Otros temas de investigación de trascendencia son los tornados asociados con mesovórtices dentro de estructuras de tormenta lineares y dentro de ciclones tropicales.
Los científicos aún desconocen los mecanismos exactos a través de los cuales se forman la mayoría de los tornados, y ocasionalmente algunos todavía aparecen sin una alerta de tornado previa.Los análisis de las observaciones a partir de instrumentos tanto estacionarios como móviles, superficiales y aéreos, y remotos e in situ, generan nuevas ideas y perfeccionan las nociones existentes. La utilización de modelos matemáticos también proporciona mayor entendimiento ya que las nuevas observaciones y descubrimientos son integrados a nuestro entendimiento físico y después puestos a prueba a través de simulaciones de computadora que validan las nuevas nociones al mismo tiempo que producen descubrimientos teóricos completamente nuevos, muchos de los cuales serían de otra forma casi indeducibles. Igualmente, el desarrollo de nuevas formas de observación y la instalación de redes de observación espaciales y temporales más finas han ayudado a tener un mayor entendimiento y mejores predicciones.
Programas de investigación, incluyendo proyectos de estudio como el proyecto VOTEX, el despliegue del TOTO, el Doppler On Wheels (DOW) y docenas de programas más, esperan contestar muchas de las interrogantes que todavía invaden a los meteorólogos. Universidades, agencias gubernamentales como el National Severe Storms Laboratory, meteorólogos del sector privado y el Centro Nacional de Investigación Atmosférica son algunas de las organizaciones en investigación activa, mismas que cuentan con varias fuentes proveedoras de fondos, tanto privadas como públicas, destacando en este sentido la National Science Foundation.